Geometry Notes – 1.1 Points, Lines, and Planes

5 Minute Check

- 1. What is the value of $x^2 + 3yz$ if x = 3, y = 6, and z = 4?
 - A. 27 B. 33 C. 72 D. 81
- 2. Solve 2(x 7) = 5x + 4.
 - A. -6 B. $-\frac{10}{3}$ C. 2 D. 6
- 3. Which is a solution of 3x + 4y = 14?
 - A. (-3, 4) B. (-2, 5) C. (1, 3) D. (2, 3)
- 4. Factor $9x^2 25y^2$.
 - A. $(3x-5y)^2$ B. $(3x+5y)^2$ C. (3x+5y)(3x-5y) D. (9x+5y)(x-5y)
- 5. Graph y = 3x + 2.

6. Which of the following equations is a quadratic equation?

A. 4 <i>x</i> = 2	B. $5x + 2y = 13$	C. $6x^2 - 3x = 16$	D. $5x^3 - x^2 + 2 = 0$
-------------------	-------------------	---------------------	-------------------------

Content Standards

G.CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.

Mathematical Practices

4 Model with mathematics.

6 Attend to precision.

Vocabulary – Undefined Terms (which are Intuitive Ideas) –			
	Points, Line, & Plane		
Term Description	How to Name It (Represent It)	Diagram (How to Draw It)	
Point – is a	Draw:	Fill this in!	
It has neither nor	Named By: a letter		
Line – made up of and	Draw: a with	Fill this in!	
has no or	on ends		
There is exactly line	Named By: the		
through any points.	representing points on		
	the or a		
	script		
Plane – a surface made	Draw: a	Fill this in!	
up of that extends	Named By: a script		
infinitely in directions.	or by the		
There is exactly plane	naming		
through any points not	points that are not all on the		
on the same line.	·		

Example 1 – Name Lines and Planes

- A. Use the figure to name a line containing point *K*.
- B. Use the figure to name a plane containing point *L*.

Example 1 – Check Your Progress

A. Use the figure to nam			
A. line X	B. line c	C. line Z	D. ŸŻ

B. Use the figure to name a plane containing point Z.

A. plane XY B. plane c C. plane XQY D. plane P

Real-World Example 2 – Model Points, Lines, and Planes

- A. Name the geometric shape modeled by a 10 \times 12 patio.
- B. Name the geometric shape modeled by a button on a table.

Real-World Example 2 – Check Your Progress

A. Name the geometric shape modeled by a colored dot on a map used to mark the location of a city.

	Α.	point	B. line segment	C. Plane	D. none of the above
--	----	-------	-----------------	----------	----------------------

B. Name the geometric shape modeled by the ceiling of your classroom.

The point of the beginnent of the upo	A. point	B. line segment	C. Plane	D. none of the above
---------------------------------------	----------	-----------------	----------	----------------------

Vocabulary – Space, Collinear Points, Coplanar Points, &					
Intersection					
Term Description	Explain in Your Own Words	Diagram			
Space – a,					
dimensional set of all					
points. Space can contain					
and					
Collinear Points – points that lie	Fill this in!	Fill this in!			
on the					
Noncollinear points					
lie on the					
Coplanar Points – points that lie	Fill this in!	Fill this in!			
in the					
Noncoplanar points					
lie in the					
Intersection – of two or more	Fill this in!	Fill this in!			
geometric figures, is the set of					
points they have					
Two lines intersect at a					
Lines can intersect,					
and planes can intersect					

Example 3 – Draw Geometric Figures

A. Draw and label a figure for the following situation. Plane *R* contains lines AB and DE, which intersect at point *P*. Add point *C* on plane *R* so that it is not collinear with \overrightarrow{AB} or \overrightarrow{DE} .

B. Draw and label a figure for the following situation. \overrightarrow{QR} on a coordinate plane contains Q(-2, 4) and R(4, -4). Add point T so that T is collinear with these points.

Example 3 – Check Your Progress

A. Choose the best diagram for the given relationship. Plane *D* contains line *a*, line *m*, and line *t*, with all three lines intersecting at point *Z*. Also, point *F* is on plane *D* and is not collinear with any of the three given lines.

B. Draw and label a figure for each relationship. \overrightarrow{BA} on a cooridinate plane contains B(-3, -2) and A(3, 2). Also, point *M* is on the plane and is collinear with these points.

Example 4 – Interpret Drawings

- A. How many planes appear in this figure?
- B. Name three points that are collinear.
- C. Are points A, B, C, and D coplanar? Explain. D. At what point do \overrightarrow{DB} and \overrightarrow{CA} intersect.

Example 4 – Check Your Progress

Α.	How many planes appea	r in this figure?		
	A. one	B. two	C. three	D. four
В.	Name three points that a	are collinear.		
	A. <i>B, O</i> , and <i>X</i>	B. <i>X, O,</i> and <i>N</i>	C. <i>R, O</i> , and <i>B</i>	D. <i>A, X,</i> and <i>Z</i>
C.	Are points X, O, and R co	pplanar?		
	A. yes	B. No	C. cannot be determined	
D.	At what point do \overleftarrow{BN} and	d \overrightarrow{XO} intersect?		
	A. point X	B. point N	C. point <i>R</i>	D. point A