Unit: Exponents and Scientific Notation Homework 1

Name _____ Date

SQUARE ROOTS AND CUBE ROOTS

Apply your knowledge of square roots and cube roots to answer each question.

- 1. Which of the following is a true statement?
- a. Squaring a number is the same as multiplying the number by 2.
- b. Taking the cube root of a number is the inverse operation of raising a number to the 3rd power.
- c. Both a and b are true.
- d. Neither a nor b is true.

3. Evaluate each expression in a-d.

- a. $(-9)^2 =$ _____ b. $2^3 =$ ____ c. $\sqrt{256} =$ ____ d. $\sqrt[3]{125} =$ ____

- a. Divide both sides by 2
- b. Take the square root of both sides

2. Joel needs to solve the equation below. Which describes the step he should take?

 $n^2 = 16$

- c. Square both sides
- d. None of the above

In 4-7, use inverse operations to find the value of the variable needed to make the equation true.

4.

$$x^2 = 169$$

$$b^3 = 343$$

$$n^2 = 625$$

$$a^3 = 1,000$$

8. Three students solved the equations shown. Use the clues to write the name of the student who solved each equation above the correct box.

 $w^2 = 121$

$$x^2 = 81$$

 $y^3 = 729$

- Huey and Liam's equation have the same solution.
- Nadia's equation has a solution that is greater than 10.
- Huey's equation can be solved by taking the cube root of both sides.

A pyramid has a square base with an area of 144 ft². Mark each statement as true or false and correct any false statements.

9. The length of one side of the pyramid's base can be found using the equation $s^2 = 144$.

10. The length of one side of the pyramid's base is 72 feet.