MULTIPLICATION FACT FLUENCY

EXPLORE THE COMMUTATIVE PROPERTY LESSON 1

The Simplified Math Curriculum™

Today we will explore the commutative property of multiplication.

The Simplified Math Curriculum™

TAKE OUT YOUR

The Simplified Math Curriculum™

The Simplified Math Curriculum™

Today we are going to explore the commutative property using rectangular arrays and number lines.

FIRST...LET'S EXPLORE RECTANGULAR ARRAYS

The Simplified Math Curriculum™

What's a rectangular array?

A rectangular array is an arrangement of objects into rows and columns that form a rectangle.

For example, this model shows that $2 \times 3 = 6$

The Simplified Math Curriculum™

What do the numbers in a multiplication equation represent?

2 groups of 3 is the same as 6

There are 2 equal rows. Each row is made up of 4 squares.

I'll start by recording the number of rows or groups in the array.

The Simplified Math Curriculum™

Next, I'll record the number of objects in each group. In this case it will be the number of squares in each group.

The Simplified Math Curriculum™

Now I want to reverse the factors and find the product of 4 and 2. I'll use a rectangular array to help again.

There are 4 equal rows. Each row is made up of 2 squares.

Finally, I'll record the total number of squares which is the product.

The Simplified Math Curriculum™

The Simplified Math Curriculum™

The Simplified Math Curriculum™

Vocabulary Highlight

When multiplying numbers, reversing the order of factors does not change the product. This is called the **commutative property of multiplication**.

2 × **4** = **8**

4 × 2 = 8

The Simplified Math Curriculum™

The Simplified Math Curriculum™

Mrs. Coleman arranged the desks into 5 equal rows. Four desks were in each row. Use the graph paper to create a rectangular array to find the total number of desks that she moved.

There are 4 desks in each row.

The Simplified Math Curriculum™

Mrs. Coleman arranged the desks into 5 equal rows. Four desks were in each row. Create a rectangular array to find the total number of desks that she moved.

© One Stop Teacher Shop © Mr. Elementary Math

The Simplified Math Curriculum™

The Simplified Math Curriculum™

© One Stop Teacher Shop © Mr. Elementary Math

The Simplified Math Curriculum™

Mrs. Coleman rearranged the desks. She made 4 equal rows with five desks in each row. Use the graph paper to create a rectangular array to find the total number of desks.

There are 5 desks in each row.

The Simplified Math Curriculum™

Mrs. Coleman rearranged the desks. She made 4 equal rows with five desks in each row. Use the graph paper to create a rectangular array to find the total number of desks.

The Simplified Math Curriculum™

How are 5 × 4 and 4 × 5 the same? Different?

© One Stop Teacher Shop © Mr. Elementary Math

The Simplified Math Curriculum™

Use the models to explain the commutative property.

LET'S DO <u>ONE MORE TOGETHER</u>...

The Simplified Math Curriculum™

What's a number line?

It is a model that represents numbers as points on a line.

We can use number lines to help us solve multiplication problems by skip counting.

The Simplified Math Curriculum™

Sara and Kim played a game. Sara jumped 3 feet four times. When it was Kim's turn, she jumped 4 feet three times. Which student jumped the farthest?

Let's start by drawing Sara's jumps. How many jumps did she make? How far was each jump?

The Simplified Math Curriculum™

Sara and Kim played a game. Sara jumped 3 feet 4 times. When it was Kim's turn, she jumped 4 feet 3 times. Which student jumped the farthest?

© One Stop Teacher Shop © Mr. Elementary Math

The Simplified Math Curriculum™

Sara and Kim played a game. Sara jumped 3 feet four times. When it was Kim's turn, she jumped 4 feet three times. Which student jumped the farthest?

Sara and Kim played a game. Sara jumped 3 feet 4 times. When it was Kim's turn, she jumped 4 feet 3 times. Which student jumped the farthest?

Sara and Kim played a game. Sara jumped 3 feet 4 times. When it was Kim's turn, she jumped 4 feet 3 times. Which student jumped the farthest?

CHECK - IN

What did you notice? Can you make a connection to anything else you already know? How? Do you have any questions?

The Simplified Math Curriculum™

Now It's "YOUR TURN" to Solve

The Simplified Math Curriculum™

Use the graph paper to create a rectangular array for 2×6 . Next, create another rectangular array to show the commutative property. Fill in the blanks for both facts.

© One Stop Teacher Shop © Mr. Elementary Math

The Simplified Math Curriculum™

Use the graph paper to create a rectangular array for 2×6 . Next, create another rectangular array to show the commutative property. Fill in the blanks for both facts.

Use the graph paper to draw a rectangular array to find the products of 3×5 and 5×3 . What does this problem show you about multiplication?

The Simplified Math Curriculum™

Use the graph paper to draw a rectangular array to find the products of 3×5 and 5×3 . What does this problem show you about multiplication?

The product of 3×5 is 15. The product of 5×3 is 15. This shows me that if the order of the factors are reversed, the product will remain the same. This is called the commutative property.

How can the commutative property help you learn multiplication facts?

The Simplified Math Curriculum™

How can the commutative property help you learn multiplication facts?

The commutative property helps because I will not have to learn all 144 facts. Learning half of my multiplication facts will help me automatically know the other half.

© One Stop Teacher Shop © Mr. Elementary Math

The Simplified Math Curriculum™

Use the double number line to solve 4×2 and 2×4 . Name one thing that is the same and one thing that is different between the facts.

Same	
Different	

The Simplified Math Curriculum™

Use the double number line to solve 4×2 and 2×4 . Name one thing that is the same and one thing that is different between the facts.

Answers May Vary

Same	Example: The product for both facts is 8; the factors are the same
Different	Example: One has 4 groups and the other has 2 groups

The Simplified Math Curriculum™

You know that 3×8 equals 24. How could you find the product of 8×3 ? Explain your answer.

The Simplified Math Curriculum™

You know that 3×8 equals 24. How could you find the product of 8×3 ? Explain your answer.

3 × 8 and 8 × 3 have the same factors. However, the factors are reversed. Due to the commutative property, I know the product will be the same. Therefore, 8 × 3 equals 24.

The Simplified Math Curriculum™

The Simplified Math Curriculum™