NOTES: LINEAR INEQUALITIES

SOLUTIONS TO LINEAR INEQUALITIES

A linear inequality is like a linear ___ _____ but it has an symbol instead of an equal sign.

to linear inequalities are any ordered pair that make the inequality true.

Tell whether each ordered pair is a solution of the linear inequality.

1.
$$(3, 9)$$
; $y \ge 5x - 6$

2.
$$(-4, 2)$$
; $4x - 5y > 6$

GRAPHING LINEAR INEQUALITIES

When graphing a ______ inequality on a coordinate plane (2 variables means we need 2 number lines, the x and y axes), we will use the graph of the related equation as a boundary line and shade above or below the line to show all possible solutions for the variables.

Steps to Graph:

Convert the inequality to slope-intercept form (solve for y) and graph the line on the coordinate plane.

Boundary Line and Shading:

Line	Solid line for \geq and \leq
	Dotted line for > and <
Shading	Shade above for $>$ and \geq
	Shade below for < and ≤

Graph the linear inequality on the coordinate plane provided. Then determine if the ordered pair given is a solution to the linear inequality. Circle yes or no.

4.
$$y \le -\frac{1}{2}x + 1$$

5.
$$2x + 6y \ge 12$$

yes

6.
$$4x - y > 5$$

yes

(2, 0)

8.
$$x - 1 \le 2$$

yes

LINEAR INEQUALITIES

Graph the linear inequality on the coordinate plane provided. Then determine if the ordered pair given is a solution to the linear inequality. Circle yes or no.

1.
$$y > \frac{1}{2}x - 3$$

2.
$$y < 3x - 4$$

3.
$$y \le -\frac{1}{4}x + 2$$

yes

(4, -1)

5.
$$8x + 2y > 10$$

6.
$$x - 3y > 9$$

