PROPERTIES OF OPERATIONS

Mathematical expressions can be written numerically, algebraically, and verbally. We can use the properties of operations to generate equivalent expressions.

COMMUTATIVE PROPERTY

The commutative property allows you to change the order of the numbers without changing the solution. The commutative property only applies to ______ and

ADDITION	MULTIPLICATION
p + r + s = r + p + s	p · r = r · p
Prove itif $p = 12$, $r = 5$, $s = 2$	Prove itif p = 12, r = {

a. Give an example to show why subtraction is NOT commutative.

ASSOCIATIVE PROPERTY

The associative property allows you to group different sets of numbers together without changing the solution. The associative property only applies to _____ and

ADDITIONMULTIPLICATION(p+r)+s=p+(r+s) $(p\cdot r)\cdot s=p\cdot (r\cdot s)$ Prove it...if p=12, r=5, s=2Prove it...if p=12, r=5, s=2

b. Give an example to show why division is NOT associative.

IDENTITY PROPERTY

The identity property allows a number to be added to or multiplied by _____ and changing the number. The identity property only applies to _____ and

____.

ADDITION	MULTIPLICATION
p + 0 = p	p · 1 = p
Prove itif p = 12	Prove itif p = 12

When a number is multiplied or added to its inverse, it returns to its identity.

INVERSE PROPERTY

For addition, a number added to ______ will result in 0.

For multiplication, a number multiplied by _____ will result in 1.

ADDITION	MULTIPLICATION
p + (-p) = 0	when $p \neq 0$, $p \cdot \frac{1}{p} = 1$
Prove itif p = 12	Prove itif p = 12

Use your understanding of the properties of operations to complete 1-2.

- 1. For a-f, apply the given property to generate an equivalent expression or equation.
 - a. $18 + q + 7 \rightarrow$ commutative property of addition \rightarrow _____
 - b. 15 + b = 0 \rightarrow inverse property of addition \rightarrow _____
 - c. $7 \cdot 8 \cdot 3 \rightarrow$ commutative property of multiplication \rightarrow ______
 - d. $11 + 24 + 9 \rightarrow$ commutative property of addition \rightarrow ______
 - e. $(6 + 5) + 8 \rightarrow$ associative property of addition \rightarrow _____
 - f. 35(r) \rightarrow multiplicative identity property \rightarrow ______`
- 2. Grady lists three different expressions below. Determine which expression is not equivalent to the others.

$$a(b) + a(c)$$

Unit: Expressions Homework 4

Name		
Date	Pd	

PROPERTIES OF OPERATIONS

Answer the questions below. Be sure to show your work.

1. Which example shows the associative property of multiplication?

A.
$$a(b + c) = ab + ac$$

B.
$$(a + b) + 9 = a (b + 9)$$

C.
$$(a \cdot b) \cdot 5 = a \cdot (b \cdot 5)$$

D.
$$(a \cdot b) \cdot 5 = (a \cdot \frac{1}{5}) \cdot b$$

2. Which example does NOT show the commutative property of addition?

A.
$$4 + x = x + 4$$

B.
$$ab = ba$$

C.
$$a + b = b + a$$

D.
$$3x + 4y = 4y + 3x$$

3. Complete the table below to show an equivalent expression.

ODIGINAL EXPRESSION	PROPERTY	EQUIVALENT EXPRESSION
15 + 0	Additive Identity	
4 · 6 · 7	Commutative Property	
9 + (5 + 3)	Associative Property	
11 • 1	Identity Property	
$\frac{1}{4} \cdot \frac{4}{1}$	Inverse Property	
9 + (-9)	Inverse Property	

4. Describe how you know that $(8 + 9) + 3$ is
equivalent to $8 + (9 + 3)$. What is the benefit
to using this property?

5.	Describe how you know	w that	q + '	7 +	1 is	
eq	uivalent to $9 + 1 + 7$. V	Vhat is	the	bene	efit	to
usi	ing this property?					