
Notes: Rational Exponents and Radical Expressions

Sometimes ______ exponents are used to represent powers of numbers or variables. The numerator of the fraction, m, represents the ______, the denominator, n, represents the ______. The denominator of the exponent must be positive.

Think of a tree!

Rewrite each exponent expression as a radical.

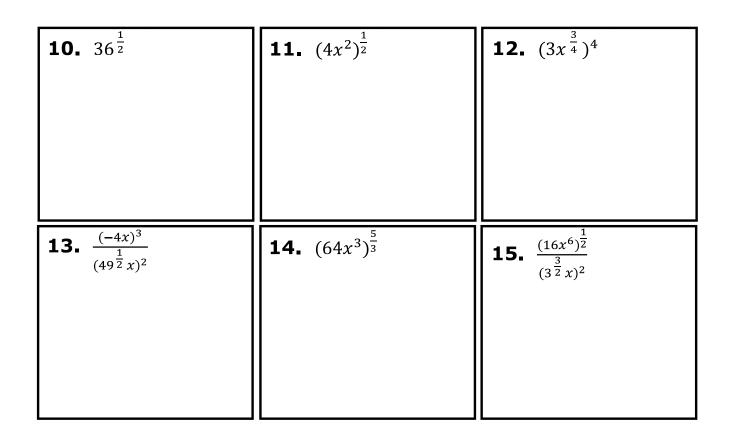
1.
$$x^{\frac{1}{2}}$$

2.
$$9^{\frac{1}{2}}$$

3.
$$x^{\frac{2}{3}}$$

Rewrite each radical expression as a rational exponent.

4.
$$\sqrt[3]{z^2}$$


5.
$$\sqrt[3]{c^{-5}}$$

All your exponent rules apply to rational exponents as well! Simplify each expression.

7.
$$4^{\frac{1}{2}}$$

8.
$$\sqrt[3]{2^6}$$

9.
$$(\sqrt{x})^2$$

Challenge!

16.
$$(4x^2)^{-\frac{5}{2}}$$
17. $\frac{(9x^2)^{\frac{3}{2}}}{(-3^{\frac{1}{2}}x^2)^4}$
18. $\frac{(\sqrt[3]{16})^{\frac{3}{2}}x^{\frac{1}{2}}}{(2^{\frac{3}{2}}x)^3x^{\frac{1}{2}}}$

Remember to use your order of operations!

A.___ Rational Exponents and Radical Expressions

Level 2

Rewrite each exponent expression as a radical.

1. $x^{\frac{3}{2}}$

2. $64^{\frac{1}{2}}$

 $3 \cdot z^{\frac{4}{3}}$

Rewrite each radical expression as a rational exponent. Write answers using positive exponents.

4. $\sqrt[7]{x^4}$

5. $\sqrt[2]{a^{-8}}$

6. $\sqrt{10}$

All your exponent rules apply to rational exponents as well! Simplify each expression using your exponent rules. Leave answers as simplified square roots, if necessary.

7. 81^{1/2}

8. $\sqrt[3]{27^2}$

9. $(\sqrt{y})^4$

10. $32^{\frac{1}{2}}$

*

11. $(25x^{-6})^{\frac{1}{2}}$

12. $(4x^{\frac{7}{3}})^{-3}$

13. $\frac{(-2xy)^3}{(64^{\frac{1}{2}}xy^3)^2}$

14. $(5x^0)^{\frac{3}{2}}$

15. $\frac{(2^{\frac{6}{2}}x^6)^{\frac{4}{3}}}{(3^{\frac{1}{2}}x^{-3})^{-4}}$