CONSERVATION OF ENERGY

Conservation of Energy:

simply converted from _____

Mechanical Energy: The sum

. Is conserved in _____

Potential energy:

Kinetic energy:

frictionless systems.

PE = 0 J

PE = _____ PE = 22,000 J PE = 55,000 J PE = 110,000 J

KE = _____ KE = ___ KE = ___ KE = ___ KE = ___ KE = 20,000 J

SOLVING PROBLEMS

You can combine the total mechanical energy, conservation of energy, and the kinetic and potential energy equations in order to solve problems.

$$\mathbb{KE} = \frac{1}{2} \mathbb{N}^{2}$$

$$\mathsf{KE} = 0.5(\underline{})^{2}$$

$$KE = 0.5(____)(___)^2$$
 $PE = (___)(___)(___)$
 9.8 m/s^2

Consider the picture of the 55 kg kid sliding down the slide. Use the tables as scaffolding to help solve the problems.

- a) Find the original PE
- b) Find the PE at the midpoint and the KE.
- c) Find the KE at the end
- d) What is the velocity of the kid at the end?

KE =
$$\frac{\text{KE}}{\text{PE}} = 0 \text{ J (on the ground)}$$

Define Variables	Write equation and show work	Answer w/ units
PE = m = g = h =	PE = mgh PE = (mass)(gravity)(height)	

Define Variables	Write equation and show work	Answer w/ units
PE = m = g = h =	PE = mgh	

Define Variables	Write equation and show work	Answer w/ units
KE = m =		
V =		

NOTE: PE is measured based on the height from the lowest point the object can travel. NOT ground

Find:

- A) The initial potential energy
 - B) Find the KE (SEE NOTE)
 - C) The speed at the bottom of the swing.
- 2) Consider the picture of Dot Dude. Dot Dude has a mass of 4.5 kg and is swinging in the

Define Variables	Write equation and show work	Answer w/ units
PE = m = g = h =		

Define Variables	Write equation and show work	Answer w/ units
KE =		
m =		
v =		

Find:

- A) The initial potential energy
- B) Find the KE (SEE NOTE)
- C) The speed at the bottom of the swing.
- 3) Examine the kid swinging on the swing. Remind the "note" made up above. The kid's mass is 45 kg.

Define Variables	Write equation and show work	Answer w/ units
PE = m = g = h =		

Define Variables	Write equation and show work	Answer w/ units
KE =		
m =		
V =		
		7