<u>Unit 9 Lesson I: Intro to Circles</u>

Circle Dictionary

Terms	Definition	Example/ Visual
Circle	The set of points equidistant from a given point (the center).	
Radius*	A segment with endpoints at the center and on the circle.	
Chord*	A segment with endpoints on the circle.	
Diameter*	A chord that passes through the center. (Diameter = 2 times radius)	
Secant*	A line that intersects the circle in two places.	
Tangent*	A line that intersects the circle at exactly one place.	
Point of Tangency	The point at which the tangent line intersects the circle.	

Central Angle*	An angle with a vertex at the center, and two sides that are radii.	
Inscribed Angle*	An angle with a vertex in the circle, and two sides that are chords.	
Arc*	A portion of the edge of the circle defined by two endpoints.	
Minor Arc	An arc with a measure less than 180 degrees. *use two letters to name it*	
Major Arc	An arc with a measure greater than 180 degrees. *use three letters to name it*	
Semicircle	An arc with endpoints on the diameter. *always equal to 180 degrees*	

Formulas			
Area	Circumference	Arc Length	Sector Area

Lesson I Example Problems

1. A circle with the center W is shown in the figure below.

- a) Name a radius
- b) Name a diameter
- c) Name a chord
- d) If the length of WY is 3 units, what is the length of TX?

2. Find the circumference and area of a circle with a radius 9mm. Keep answer in terms of π .

3. In the circle below, F is the center, GI is the diameter, and $\widehat{mGH}=50^{\circ}$ Find the following information.

- a) An inscribed angle
- b) Major arc
- c) Minor arc
- d) Find $m \angle GFH$
- e) Find $m \widehat{GJI}$

3. Find each angle and arc measures.

$$\widehat{mST} = \underline{\qquad \qquad}$$

$$\widehat{mRS} = \underline{\qquad \qquad}$$

$$\widehat{mSRT} = \underline{\qquad \qquad}$$

4. The circle below has a center D. Suppose that $m \angle BDC = 104^{\circ}$. is the central angle. Find the following.

a)
$$\widehat{mBC}$$

b)
$$m \angle BAC$$

5. In the circle below, $\widehat{m\ GHE} = 216^\circ$ and $m\angle HGF = 103^\circ$. Find the following.

Unit 9 Lesson 2: Angles with Circles

ARCS & ANGLES

formed by Intersecting Chords, Secants, & Tangents When chords, secants, and tangents intersect in a circle (Figure 1), on a circle (Figure 2), or outside of a circle (Figure 3), special relationships exist between the angle and arc measures formed.

Figure 1 (inside the circle)

Figure 2 (on the circle)

Figure 3 (outside the circle)

INTERIOR

Intersections

If two secants or chords intersect inside a circle, then the measure of the angle formed is equal to **half the sum of the measures of the intercepted arcs**.

Find each measure.

1. $m \angle AED$

2. *m*∠*STR*

ON THE CIRCLE

Intersections

If a secant and a tangent intersect at the point of tangency, then the measure of each angle formed is equal to half the measure of its intercepted arc.

Find each measure.

7. *m∠DEG*

8. *m*∠*DBC*

EXTERIOR Intersections

If secants and/or tangents intersect on the exterior of a circle, then the measure of the angle formed is equal to **half the difference of the intercepted arcs**.

of the angle ferrior is equal to than the amoretice of the interest area.				
TWO SECANTS	SECANT & TANGENT	TWO TANGENTS		
$m \angle A =$	$m \angle A =$	$ \begin{array}{c} B \\ C \end{array} $ $ m \angle A = $		

Find each measure.

12. *m∠BCD*

15. *m∠KLM*

18. \widehat{mMK}

19. *m∠PQR*

20. *m∠CDE*

Init 9 Lesson 3: Segme	nts with Angles		
	TYPE 1	TYPE 2	TYPE 3
SEGMENT LENGTHS	Intersecting chords (or secants) inside the circle.	Intersecting secants outside the circle.	Intersecting secant and tangent outside the circle.
formed by Intersecting Chords, Secants, & Tangents			a b c
1. Solve for x .	sure. Assume all segment	ts that appear to be tange 2. Find <i>BD</i> .	ent are tangent.
	14 10 15 x		$ \begin{array}{c c} B \\ \hline 4 \\ 6 \\ 5x-1 \end{array} $
5. Solve for x.	9 8 19	6. Find <i>NL</i> .	$ \begin{array}{c c} J & 42 & K & 10 \\ \hline & & & M & 13 \end{array} $
7. Solve for <i>x</i> .	$ \begin{array}{c c} 8 & 3x+4 \\ \hline 5x+2 & \\ \end{array} $	8. Find YZ.	X 12 15 Y x-8

9. Solve for *x*.

Unit 9 Lesson 4: Arc Length, Sector Area, and Equation of a circle

ARC LENGTH

The length of an arc is a portion of the circumference.

Arc Length Formula:

x = degree measure of arc C = circumference

Directions: Find the length of each bolded arc to the nearest hundredth.

1.

SECTOR

A sector is a _____ of a circle bounded by a ____ and its intercepted ____.

Think of a sector like a slice of _____!

AREA OF A SECTOR

x =degree measure of arc

r = radius of circle

Directions: Find the area of each shaded sector. Round to the nearest hundredth.

1. BC = 16 ft

2. PQ = 22 cm

4. GH = 13 yd

8. MN = 29.5 mi

Standard form of the equation of a circle is

$$(x-h)^2 + (y-k)^2 = r^2$$

Where the center of the circle is $C(\underline{},\underline{})$ and the radius is $\underline{}$.

Use the equations below to fill in the blanks. Leave answers in simplest radical form.

Center

Radius

1.
$$x^2 + y^2 = 1$$

2.
$$x^2 + y^2 = 9$$

3.
$$x^2 + y^2 = 25$$

4.
$$(x-3)^2 + (y-2)^2 = 16$$

5.
$$(x+3)^2 + (y-2)^2 = 16$$

6.
$$(x+3)^2 + (y+2)^2 = 9$$

7.
$$(x-3)^2 + (y+2)^2 = 25$$

8.
$$(x+1)^2 + (y-3)^2 = 4$$

9.
$$x^2 + (y+8)^2 = 80$$

Write an equation for each circle 13-15:

12

. .

15

8 -6 -4 -2 2 2 4 6 8 x

Find the radius and center, then graph the circle 16-18:

16.
$$x^2 + y^2 = 4$$

17.
$$(x-4)^2 + (y-3)^2 = 4$$

18.
$$(x+3)^2 + (y-2)^2 = 9$$

