

Name _____

Ecosystems and the Biosphere: Energy Flow Through the Ecosystem and the Recycling of Matter

Overview: An ecosystem is: _____

All of the organisms living on Earth need ______ to carry out life processes such as growth, movement, and reproduction. In an ecosystem, the ultimate source of energy is the _____. The sun's energy is ______ from one form to another and ______ through the various levels of the ecosystem. The flow of energy through an ecosystem is crucial to the ecosystem's ability to sustain life.

I. Energy Flow Through the Ecosystem

- A. Sunlight is the _____
 - 1. Without this energy from the sun, _____
 - 2. Of all the sun's energy that reaches the earth, less than ______ is actually used by
 - This 1% is used by the organisms that are capable of ______.
 Photosynthesis is the process by which ______.
 - 4. The organisms on Earth that cannot carry out photosynthesis rely on ______
 - 5. Not only does photosynthesis provide ______ in the form of ______ for many of the organisms on Earth, but it also removes _______ from the atmosphere and releases ______ into the atmosphere.

B. Autotrophs

- 1. Autotrophs are organisms that have the ability to ______
- 2. Autotrophs convert ______

3. The only organisms that are autotrophs are _____

4.	On l	land, the ar	re the main autotrophs. In aquatic ecosystems,		
		are the main autotrophs			
	are	also important	producers.		
5.	Auto	otrophs are also called "	".		
6.	The	e autotrophs are essential to the flow o	f through the ecosystem.		
7.	Our	very life is	on these autotrophs. Without them, we would not		
	have				
8.	A fe	ew autotrophs can produce food in the	Through a		
			, these autotrophs use the energy contained in the such as hydrogen sulfide to produce		
	food	d. Chemosynthesis is a process that is	carried out by several types of		
C. Hete	rotro	ophs			
1.			nergy from the sun as the autotrophs do.		
2.	The	ese organisms acquire their energy from	m		
3.	Heterotrophs are organisms that				
	They rely on other organisms for their				
4.	Hete	erotrophs are also called "	".		
5.	The	ere are many types of heterotrophs:			
	a)	Herbivores obtain energy by			
	b)	Carnivores obtain energy by			
	c)	Omnivores obtain energy by			
	d)				
		Examples of detritivores are	 		
	e)	Decomposers are a class of detritivo	res that cause		
		Do	ecomposers include		
		Some of the molecules released during	ng decay are consumed by the,		
		and some of these molecules are retu	urned to The action of		
		the decomposers makes the	contained in the dead bodies and		
		wastes of organisms available to	The process of decomposition		

f)	What wo	uld happen if there was no decompo	osition? All life on Earth would	
		as detritus () piled up and t	the supply
	of	needed to	build new	was
	exhauste	d. Chemical elements such as		must
	be recycl	ed to be used again in new organisn	ns.	
In summa	ary,	enters the	in the form of	•
It is conv	erted to	energy by	and passed to	
		in the form of	·	

II. Feeding Relationships

D.

A. What happens to energy in an ecosystem as one organism eats another?

The energy flows in a ______ path through the ecosystem. Energy enters the ecosystem in the form of ______. Photosynthetic organisms convert the sun's energy into molecules of ______. This energy is then passed on to the animals that eat the plants and to the animals that eat other animals.

B. Energy flows through an ecosystem in ______, from the ______ to _____ and then to various ______.

C. Food Chains

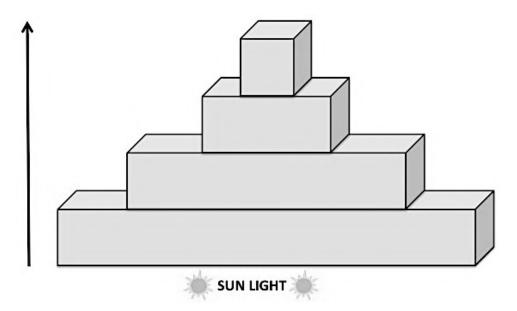
- The energy stored by producers in the form of glucose molecules can be passed through an ecosystem along a ______.
- 2. A food chain is _____
 - 3. All food chains begin with an ______.
 - 4. Examples:
 - a) ______b) ______

D. Food Webs

- In an ecosystem, the feeding relationships between organisms are much too complex to be shown in a _____.
- 2. Many consumers eat ______. More than one species may feed on ______.

	3.	There are many between many different food chains.
	4.	Food web
	5.	A food web links in an ecosystem together.
E.	Trop	bhic Levels
	1.	
		indicates
	2.	The first trophic level in a food chain is always made up of These
		organisms are referred to as
	3.	The second trophic level is occupied by the that feed on the
		These organisms are referred to as
	4.	belong to the third level. These organisms are
		referred to as
	5.	
	6.	Each consumer depends on the
	7.	Most ecosystems contain only trophic levels.
Pr	odu	activity of the Ecosystem

III. P


- A. The productivity of the ecosystem can be measured in two ways:
 - 1. _____ 2. _____
- B. Gross primary productivity:
 - 1. Gross primary productivity is _____
 - 2. Gross primary productivity is the ______ that is converted to ______ energy by ______ per unit time.
 - 3. The photosynthetic organisms in the ecosystem capture the energy from the _____ and store it in molecules of ______.

C.		hat does the plant do with the glucose it produces? About of the glucose is used immediately in Respiration is the conversion of			
	2.				
		building of other compounds within the cell.			
	3.	Much of the glucose is			
D.	Bio	omass is a term that is used to describe			
	Pr	oducers add biomass to an ecosystem by making			
E.	Net j 1.	orimary productivity The energy stored as is available to other organisms in the ecosystem.			
	2.	Net primary productivity is equal to			
	3.	Remember: Gross primary productivity is			
		The remaining glucose is and is			
	4.	available to Net primary productivity is the most important measurement because it represents the amount of that will be available to			
	-	in the ecosystem.			
	5.	Net primary productivity greatly from one to another. For example, net primary productivity in a tropical rain forest is about times greater than the net primary productivity in a desert of the same size.			
	6.	Rain forests account for of the Earth's surface, but account for of the world's			
	7.	In terrestrial ecosystems, three factors determine the net primary productivity: a)			
		An increase in these three factors generally leads to an increase in the amount of			

- 8. In aquatic ecosystems, productivity is limited by two factors:
 - a) _____ b)

F. Energy Transfer Between Trophic Levels

- 1. The amount of energy or matter in an ecosystem can be represented by an
- 2. Ecological pyramid: _____
- 3. Roughly ______ of the total energy ______ in one trophic level is passed to the organisms in the ______.
- 4. The pyramid shape of the diagram below represents the low percentage of energy transfer from one trophic level to the next. Label each section of the ecological or energy pyramid.

- 5. Why is the transfer of energy to the next trophic level so low?
 - a) Not all of the ______ possessed by the organisms at one trophic level will be
 - _____ up to the next trophic level. Organisms _____ much of the energy they


_____ for their own _____ such as respiration,

movement, or reproduction.

b) Many organisms at one trophic level will ______ by the ______ at the next level. The ______ of these "______" will not be passed to the organisms at the ______ level.

- c) Even if the organism is ______, some of the molecules in its body will be in a form that the consumer cannot ______. An example might be the ______ of an antelope eaten by a lion.
- d) Any energy consumed from ______ cannot be ______ to the next trophic level.
- e) Finally, no energy transformation is ______ efficient. At each trophic level some energy will be lost to the environment in the form of _____.
- 6. Because each ______ receives only _____ of the energy from the trophic level _____, it can support only about _____ the amount of
- 7. Label each section of the energy pyramid seen below.

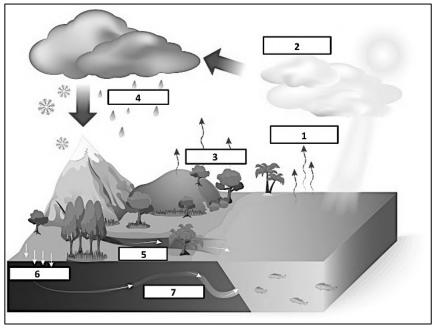
_____**.**

If the energy content of the grass is approximately 5,000 calories per square meter of land surface, calculate the amount of energy that will be passed up to each trophic level.

8. The low rate of energy transfer between trophic levels explains why _____

9. Higher trophic levels contain less _____, and therefore, they can support fewer

IV. Ecosystem Recycling

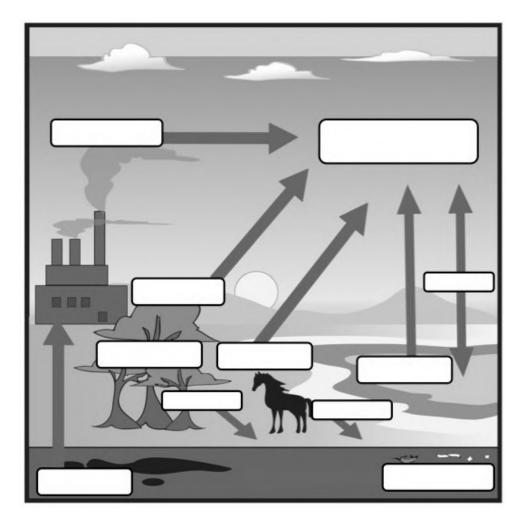

- B. Recycling in the Biosphere
 - 1. _____ move through an ecosystem in very different ways.
 - Energy moves through an ecosystem in a ______. Energy enters an ecosystem in the form of ______ and exits the ecosystem in the form of ______. This energy ______.
 - 3. Matter, however, is ______within and between ______.
 - Elements and compounds are recycled in ______.
 A biogeochemical cycle connects the ______.
 aspects of the biosphere.
 - 5. Biogeochemical cycle: _____

- C. Types of biogeochemical cycles include:
- 1. _____ 2. _____ 3. _____ 4. _____ V. The Water Cycle A. Everyone knows that water is crucial to life. Living cells are ______ water. Water provides the environment in which most of the ______ of the cell occur. B. At any given time, the water of earth can be found in the following places: 1. Bodies of water such as _____ 2. Stored in the bodies of ______. 3. In the atmosphere as _____. 4. Stored in underground formations as _____. 5. Oceans contain ______ of the water on earth. 2% is found in the ______ on earth. Only 1% of the water on earth is found in _____. C. The movement of water between these various ______ is known as the ______. D. Four processes account for the movement of water molecules through the ecosystem: 1. _____ 2. 3. _____ 4. _____
 - E. Steps to the Water Cycle

Label each numbered section seen in the water cycle diagram to the right.

1. _____

- 2. ______
- 4. _____
- 5. _____
- 6. _____
- 7. _____

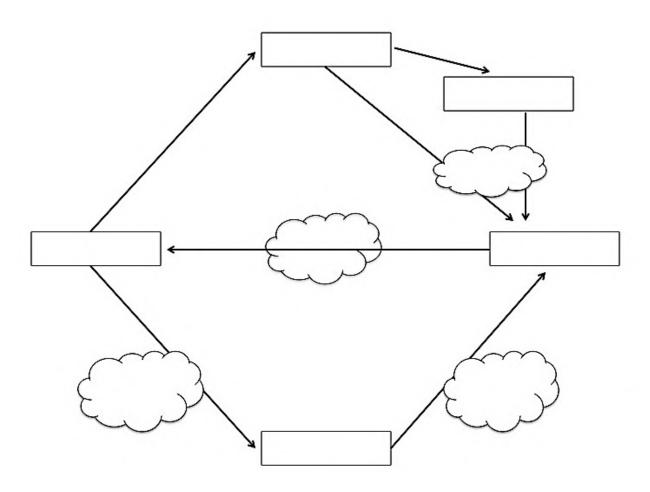


	In the process of evaporation,				
	causes water molecules to from bodies of water and from the bodies of living organisms.				
2					
2.		lds molecules of water to the			
	Transpiration is				
	Water enters plants through the _ leaves contain pores called		_		
	leaves contain pores caned				
	When the stomata are open, mole		_ from the leaf and enter		
	the atmosphere.				
3.	The water vapor in the atmosphe	re to form the	e This is		
	known as	<u>.</u>			
4.	Animals also contribute	to the	but in a		
	much less significant way than pla	ants. Animals lose water when t	hey		
5.	Water the atmosphe				
	The atmo		-		
	water vapor in the atmosphere is				
	Once the atmosphere becomes	with water vapor	, it returns to the Earth in		
	Once the atmosphere becomes the form of	_	, it returns to the Earth in		
	the form of	_	, it returns to the Earth in		
ne (-	_	, it returns to the Earth in		
	the form of				
C:	the form of Carbon Cycle arbon is the key of a	all	All of the		
C:	the form of Carbon Cycle arbon is the key of a	all	All of the		
Ca In	the form of Carbon Cycle arbon is the key of a	all unds for living cells, there must	All of the		
Ca In su	the form of Carbon Cycle arbon is the key of a n order to build new organic compo	all unds for living cells, there must `	All of the be a constant and steady		
C: Ir su	the form of Carbon Cycle arbon is the key of a n order to build new organic compo- upply of available	all unds for living cells, there must ` form the basis of the	All of the be a constant and steady carbon cycle. Carbon		
C: Ir su di	the form of Carbon Cycle arbon is the key of a n order to build new organic compo- upply of available	all unds for living cells, there must i form the basis of the and used to build molecules of	All of the be a constant and steady carbon cycle. Carbon f		
Ca Irr su di B	the form of Carbon Cycle arbon is the key of a n order to build new organic compo- upply of available ioxide is taken in by	all unds for living cells, there must l form the basis of the and used to build molecules of urry out	All of the be a constant and steady carbon cycle. Carbon f in which the		

VI.

- C. Many types of processes move carbon through the ecosystem:
 - 1. Photosynthesis _____
 - 2. Cellular respiration and decomposition _____
 - Geochemical processes, such as _____, release carbon dioxide to the atmosphere and oceans.
 - 4. Biogeochemical processes cause dead organisms to ______. Under pressure, their bodies are converted into coal and petroleum (fossil fuels). This stores ______.
 - 5. Human activities, such as _____
- D. Steps in the Carbon Cycle

Label the steps of the carbon cycle in the diagram below:


-	1.	In the	, carbon is p	resent in the fo	rm of
2	2.	This carbon dioxide is re	eleased to the atmosp	here by	
	3.	Plants () take in the carb	on dioxide and	use it during
			to build molecules	of	·
2	4.	The glucose molecules a	nd other carbohydra	tes are	
		to animals and other con	nsumers.		
[5.	The also se	erves as a storage are	a for	Many marine organisms
		combine carbon, calciun	n and oxygen to form		This calcium
		carbonate accumulates	in marine sediments a	and in the	of many
		marine organisms. Even atmosphere.	ntually these compou	nds break down	and the carbon returns to the
г т	ho	Human Impact on the Car	rhon Cycle		
	1.	In the last 150 years, the	e concentration of		in the atmosphere has
		dramatica	lly. Most of this incre	ase has occurre	d in the last 40 years. The
		activities of	are responsible fo	or this huge incr	ease in atmospheric carbon
		dioxide.			
2	2.	Our industrial society de	epends on the energy	that comes fror	n
		But the burning of these	fossil fuels	the	amount of carbon dioxide
		entering the atmosphere	e.		
	3.	Life on Earth depends of	n the "		". Carbon dioxide, water
		vapor and other gases _			·
		This the Ear	th and	it from the	deep cold of space.
Z	4.	However, the	of carbon dioxic	le also	the greenhouse effect.
		Today,	is being trap	ped by the atmo	sphere and this has led to the
		current period of		_•	
		-			
		l itrogen Cycle l organisms must have nit	trogen in order to bui	ld	
B.	Nit	trogen gas makes up abou	ut of Earth's _		It would appear that
	nit	rogen is	for u	se in manufactu	uring proteins and amino acids.
	Но	wever, most organisms _		to r	make use of atmospheric
	nit	rogen.			

VII.

C.	Nit	rogen is also found in			
D.		The nitrogen cycle is possible only because of several different types of Each type of bacteria plays a particular role in the			
		ycling of nitrogen.			
E.	Nit 1.	rogen Fixation A special group of soil-dwelling bacteria, known as, are able to			
	2.	These bacteria			
	3.	Nitrogen Fixation:			
	4.	The nitrates are absorbed			
		Plants use nitrates to build			
	5.	The nitrogen is then passed			

Steps of the Nitrogen Cycle F.

Fill in the diagram as the steps below are being discussed.

The nitrogen cycle is a complex cycle with five important processes:

,	Δmm	onification	
		Many animals excrete and eliminate nitrogen in	
		Soil bacteria convert these waste products into	In addition, these
		bacteria convert the nitrogen compounds in	to ammonia
	b)	Some of this ammonia is absorbed by and	used to make
	c)	 Ammonification is	
		fication	
	a)	Some of the in the soil is converted by se	veral kinds of bacteria to
	b)	These nitrates are absorbed from the soil by	
	c)	Nitrification is	
		rification Another kind of bacteria acts on	
	b)	This is released into the	
	c)	Denitrification is	
•	Assin a)	nilation	
	b)	Plants use to build	proteins and nucleic acids.
	c)	When animals the plants, they use the nitrogen to b	ouild

G.	The nitrogen	cycle	requires
~ .			

VIII.

What is the role of each of the following groups of bacteria?

1	l.	Nitrogen – fixing bacteria:
ź	2.	Ammonifying bacteria:
	3.	Nitrifying Bacteria:
L	ł.	Denitrifying bacteria:
Th	e I	Phosphorus Cycle
A.	Pł	nosphorus is essential in all living organisms because it is needed to
B.		though phosphorus is of great biological importance, it is
C.		nlike the other essential elements that are recycled such as carbon, nitrogen, and oxygen, nosphorus does not enter the
D.	Pł	nosphates are usually present in rocks and soil as
	pł	alcium phosphate dissolves in water to form inorganic As nosphates are released from, it washes into streams and rivers, rentually making its way to the where it is used by
E.	Sc	ome phosphates remain on land and cycle between and the
F.	in	Then absorb phosphate from the soil or from water, they bind the phosphate to The phosphate moves through the om producers to consumers.

IX. Nutrient Limitation

A. As we have already learned above, primary productivity is _____

A factor that determines the primary productivity of an ecosystem is _____

B. Limiting nutrient: _____