Name: ______ Date: ______Period: _____

NOTES: INTRODUCTION TO Quadratic Functions

Parts of a Quadratic Function

Standard vs. Vertex Form

Standard Form

$$f(x) = ax^2 + bx + c$$

$$f(x) = 2x^2 + 5x - 3$$

Vertex Form

$$f(x) = a(x - h)^2 + k$$

vertex: (,)

Linear vs. Quadratic Parent Functions

Linear

$$f(x) = x$$

Quadratic

$$f(x) = x^2$$

Definitions Axis of Symmetry

YHAT IS IT?

ALWAYS PASSES THROUGH THE

FORMULA:

Graph .	a Quad	lratic	with	x =	4
as th	ne axis	of sy	mme	try	

Vertex

The vertex is the

part of a graph.

y-value of vertex is determined by plugging in AOS value for x:

How do we know if the parabola opens UP or DOLEN?

When the parabola opens up, the "a" value is positive, and the vertex is known as a

$$f(x) = x^2$$

When the parabola opens down, the "a" value is negative, and the vertex is known as a

$$f(x) = -x^2$$

Use the formulas to determine the vertex and axis of symmetry for each quadratic function. Then draw a rough sketch of the parabola on the graph provided.

1.
$$f(x) = x^2 + 10x + 15$$

Axis of Symmetry:

$$x = \frac{-b}{2a}$$

Vertex:

Graph:

2.
$$f(x) = -2x^2 - 8x - 15$$

Axis of Symmetry:

Vertex:

Graph:

What if there is no "b" value?

your axis of
symmetry is always

x = (the y-axis)

Determine the axis of symmetry for the following quadratic function. Then determine the vertex.

$$f(x) = x^2 - 5$$

 $x = \frac{-b}{2a}$

INTRODUCTION TO Quadratic Functions

Determine the vertex and axis of symmetry for each quadratic function. Then draw a rough sketch on the graph provided.

1.
$$f(x) = 2x^2 + 12x + 11$$

Axis of Symmetry: _____

Vertex: _____

Graph:

2.
$$f(x) = -x^2 - 2x + 3$$

Axis of Symmetry: _____

Vertex: _____

Graph:

3.
$$f(x) = x^2 + 4x$$

Axis of Symmetry: _____

Vertex:

Graph:

4.
$$f(x) = -3x^2 + 2$$

Axis of Symmetry:

Vertex:

Graph:

