Name:______ Date:______Period:_____

NOTES: GRAPHING Quadratic Functions

Steps to Graph a Quadratic Function

|. Use _____ to find the _____.

2. Next, find the ______.

3. Use the vertex as the middle point in your table. Find two points above and below (or left and right).

4. _____ points and connect to make a ______.

Examples

1.
$$f(x) = x^2$$

a= ____ b= ___ c= ___

Axis of Symmetry:

Vertex: _____

X	f(x)

Domain:

Examples continued

1.
$$f(x) = x^2 - 4$$

a= ____ b= ___ c= ____

x f(x)

Axis of Symmetry: _____

Vertex:

Graph:

Domain:

Range:

3.
$$f(x) = -x^2 + 2x + 3$$

a= ____ b= ___ c= ____

x f(x)

Axis of Symmetry: _____

Vertex: _____

Graph:

Domain:

A. <u>GRAPHING</u> Quadratic Functions

Determine the vertex and axis of symmetry for each quadratic function. Then create a table of values and graph. State the domain and range.

1. $f(x) = 3x^2 + 12x + 2$

a= ____ b= ___ c= ___

Axis of Symmetry: _____

Vertex: _____

Graph:

Domain:

Range:

2. $f(x) = -x^2 - 2x + 1$

a= ____ b= ___ c= ____

Axis of Symmetry: _____

Vertex:

Graph:

Domain:

Graphing Quadratic Functions Continued

3.
$$f(x) = 2x^2 - 4$$

a= ____ b= ___ c= ___

Axis of Symmetry: _____

Vertex: _____

Graph:

Domain:

Range:

4.
$$f(x) = -x^2 - 8x - 12$$

Axis of Symmetry: _____

Vertex: _____

Graph:

Domain: