REGULAR				
POLYGON	The measure of a single interior angle in a regular polygon can be be found by dividing the sum of the interior angle measures, S, by the number of sides, n.			
	Find the measure of each interior a	ngle in the following polygons.		
	5. regular pentagon	6. regular 18-gon		
sum of the	Find the measure of each exter	ary to their adjacent interior angle. ior angle on the polygons below, exterior angle measures.		
EXTERIOR ANGLE Measures	Triangle: Sum of Exterior Angles Measures: 61° 40°	Quadrilateral: Sum of Exterior Angles Measures 71° 89°		
	Pentagon: 98° 121° Angles Measures:	Hexagon: Sum of Exterior Angles Measures 115° 112° 117° 123°		
	What can you conclude about the su a polygon?	um of the exterior angles measures of		
MORE EXAMPLES	7. What is the measure of each exterior angle of a regular hexagon?	8. What is the measure of each exterior angle of a regular 24-gon?		
	9. If the exterior angle of a regular polygon measures 12°, how many sides does the polygon have?	10. If the exterior angle of a regular polygon measures 40°, how many sides does the polygon have?		

Sum of the INTERIOR Angle Measures: Sum of the EXTERIOR Angle Measures: Sum of the EXTERIOR Angle Measure: INTERIOR & EXTERIOR ANGLES OF REGULAR POLYGONS REFERENCE: Interior Angle Measure of a Regular Polygon: The Number of Sides of a Regular Polygon: of a Regular Polygon:

PR	ACTICE QUESTIONS	
1.	What is the sum of the measures of the interior angles of a pentagon?	2. What is the sum of the measures of the interior angles of a 27-gon?
3.	What is the measure of each interior angle of a regular octagon?	4. What is the measure of each interior angle of a regular 20-gon?
5.	Five angles of a hexagon measure 119°, 129°, 104 sixth angle?	 °, 139°, and 95°. What is the measure of the
6.	The sum of the interior angles of a polygon is 1620	°. How many sides does the polygon have?
7.	The sum of the interior angles of a polygon is 3960	°. How many sides does the polygon have?
8.	What is the sum of the measures of the exterior angles of a nonagon?	9. What is the measure of each exterior angle of a regular 20-gon?
		© Gina Wilson (All Thinas Alaebra®, LLC), 2014-2019

- **10.** If the exterior angle of a regular polygon measures 9°, how many sides does the polygon have?
- 11. If the interior angle of a regular polygon measures 108°, how many sides does the polygon have?

12. Find the value of x.

	,
79°	55°/
\'`	
\110°	x°/

13. Find the value of x.

14. Solve for *x*.

15. Find $m \angle B$.

16. If the figure below is a regular polygon, find the value of x.

17. Find the value of x.

Name:		Unit 8: Polygons & Quadrilaterals	
Date:	Per:	Homework 1: Angles of Polygons	

** This is a 2-page document! **

- 1. What is the sum of the measures of the interior angles of an octagon?
- 2. What is the sum of the measures of the interior angles of a 25-gon?
- 3. What is the measure of each interior angle of a regular hexagon?
- 4. What is the measure of each interior angle of a regular 16-gon?
- **5.** What is the sum of the measures of the exterior angles of a decagon?
- 6. What is the measure of each exterior angle of a regular 30-gon? _____
- 7. An exterior angle of a regular polygon measures 22.5°. How many sides does it have? _____
- 8. An interior angle of a regular polygon measures 170°. How many sides does it have?
- **9.** If the sum of the measures of the interior angles of a polygon is 1980°, how many sides does the polygon have?
- **10.** If the sum of the measures of the interior angles of a polygon is 5400°, how many sides does the polygon have?
- **11.** The measure of the seven angles in a nonagon measure 138°, 154°, 145°, 132°, 128°, 147°, and 130°. If the two remaining angles are equal in measure, what is the measure of each angle?
- **12.** Find the value of x.

13. Find the value of x.

14. Find the value of x.

15. Find the value of x.

16. Find $m \angle V$.

17. If the figure below is a regular polygon, find the value of x.

18. Find $m \angle BCA$.

Name:	Date:

Topic:		Class:
--------	--	--------

Main Ideas/Questions	Notes/Examples
0	Definition of a Parallelogram:
properties of	
PARALLELOGRAMS	Other important properties of parallelograms:
	9
	0
	•

Directions: Each quadrilateral below is a parallelogram. Find the missing measures.

A 15

$$m \angle B = \underline{\qquad}$$
$$m \angle C = \underline{\qquad}$$

2.

$$m \angle K =$$

3.

68°

4.

5. Given XY = 15, WX = 22, ZX = 32, WT = 10, $m \angle WZY = 62^{\circ}$, $m \angle WXT = 27^{\circ}$, and $m \angle ZWT = 77^{\circ}$.

6. Given $m \angle GHF = 34^{\circ}$, $m \angle HJF = 124^{\circ}$, and $m \angle FKJ = 79^{\circ}$.

7. Solve for x.

8. Find *YZ*.

9. If TV = 74 and WV = 4x + 1, solve for x.

10. If NS = 2x + 7 and SQ = 5x - 23, find NQ.

11. Find $m \angle B$.

12. Find $m \angle R$.

13. If $m \angle KLH = 134^{\circ}$, solve for x.

14. If $m \angle ABC = 115^{\circ}$, find $m \angle ADB$.

SET I:	Use the	distance ¹	formula t	o det	ermine	if the	figure	is a	parallelog	aram
				o ao			119010	5	P GI GIIO G	<i>j</i> 1

1. A(-7, 4), B(1, 2), C(9, -8), D(1, -6)

2. *P*(-4, 2), *Q*(6, 4), *R*(11, -2), *S*(2, -3)

SET 2: Use the slope formula to determine if the figure is a parallelogram.
3. W(-7, -4), X(1, -6), Y(5, -13), Z(1, -12)
4. E(0, 8), F(6, 10), G(2, 0), H(-4, -2)
SET 3: Use the distance formula AND slope formula to determine if the figure is a parallelogram.
▄▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗
5. $J(-9, -2)$, $K(-5, 1)$, $L(1, -4)$, $M(-3, -7)$
5. J(-9, -2), K(-5, 1), L(1, -4), M(-3, -7)
5. J(-9, -2), K(-5, 1), L(1, -4), M(-3, -7)
5. J(-9, -2), K(-5, 1), L(1, -4), M(-3, -7)
5. J(-9, -2), K(-5, 1), L(1, -4), M(-3, -7)
5. J(-9, -2), K(-5, 1), L(1, -4), M(-3, -7)
5. J(-9, -2), K(-5, 1), L(1, -4), M(-3, -7)
5. J(-9, -2), K(-5, 1), L(1, -4), M(-3, -7)
5. J(-9, -2), K(-5, 1), L(1, -4), M(-3, -7)
5. J(-9, -2), K(-5, 1), L(1, -4), M(-3, -7)
5. J(-9, -2), K(-5, 1), L(1, -4), M(-3, -7)

© Gina Wilson (All Things Algebra®, LLC), 2014-2019

Name:

Unit 8: Polygons & Quadrilaterals

Date: _____ Per: ____

Homework 2: Parallelograms

** This is a 2-page document! **

Directions: If each quadrilateral below is a parallelogram, find the missing measures.

1.

$$m\angle L = \underline{\hspace{1cm}}$$

2.

3. Given PQ = 24, PS = 19, PR = 42, TQ = 10, $m \angle PQR = 106^{\circ}$, $m \angle QSR = 49^{\circ}$, and $m \angle PRS = 35^{\circ}$.

$$QR = \underline{\hspace{1cm}} m \angle QRS = \underline{\hspace{1cm}}$$

$$SR =$$
_____ $m \angle PQS =$ _____
 $PT =$ _____ $m \angle RPS =$ _____

4. Find *KL*.

5. If AC = 8x - 14 and EC = 2x + 11, solve for x.

6. Solve for *x*.

7. Find $m \angle V$.

8. If $m \angle BCD = 51^{\circ}$, solve for x.

9. If $m \angle VST = (5x + 23)^{\circ}$ and $m \angle VUT = (8x - 49)^{\circ}$, find $m \angle SVT$.

Directions: Determine whether the quadrilateral is a parallelogram using the indicated method.

10. Q(-10, -2), R(1, -1), S(1, -7), T(-11, -8) (Distance Formula)

11. K(2, 7), L(6, 12), M(13, 13), N(9, 8) (Slope Formula)

12. D(-5, -6), E(5, 2), F(4, -4), G(-6, -12) (Distance & Slope Formulas)

PARALLELOGRAM Profs

Recall: What is the definition of a parallelogram?

Use the definition of a parallelogram to complete each proof.

Given: $\angle BAC \cong \angle DCA; \angle BCA \cong \angle DAC$

Prove: ABCD is a parallelogram

Statements	Reasons

2 Given: $\overline{WX} \cong \overline{YZ}$; $\overline{WZ} \cong \overline{YX}$

Prove: WXYZ is a parallelogram

Statements	Reasons

	_
4	7
	ж
	v

3 Given: $\overline{PQ} \cong \overline{RS}$; $\overline{PQ} \parallel \overline{RS}$

Prove: PQRS is a parallelogram

Statements	Reasons

Other properties of parallelograms:

- Opposite sides are congruent.
- Opposite angles are congruent.
- Diagonals bisect each other.
- Adjacent angles are supplementary.

Complete each proof.

Given: *JKLM* is a parallelogram **Prove:** $\overline{JK}\cong\overline{LM}$ and $\overline{JM}\cong\overline{LK}$

Statements	Reasons

Given: CDEF is a parallelogram

Prove: $\angle DCF$ and $\angle CFE$ are supplementary

Statements	Reasons

6 Given: *RSTU* is a parallelogram

Prove: $\angle U \cong \angle S$

Statements	Reasons

Properties of parallelograms are sufficient to prove a quadrilateral is a parallelogram. The list below summarizes ways to prove a quadrilateral is a parallelogram.

- Show that both pairs of opposite sides are parallel. (Definition of a Parallelogram)
- Show that both pairs of opposite sides are congruent.
- Show that both pairs of opposite angles are congruent.
- Show that the diagonals bisect each other.
- Show that one angle is supplementary to both adjacent angles.
- Show that one pair of opposite sides are congruent and parallel.

Complete each proof.

Given: P is the midpoint of \overline{LN} and \overline{KM}

Prove: KLMN is a parallelogram

Statements	Reasons

8 Given: $\Delta EDG \cong \Delta GFE$

Prove: *DEFG* is a parallelogram

Reasons

Given: $\angle XWZ \cong \angle ZYX$; $\Delta WXY \cong \Delta YZW$

Prove: WXYZ is a parallelogram

Statements	Reasons

(1) Given: \overline{QS} bisects \overline{RT} ; $\angle RSQ \cong \angle TQS$

Prove: *QRST* is a parallelogram

Statements	Reasons

4		
	П	١
v	Ш	,

Given: $\overline{BA} \cong \overline{BE}$, $\angle CBE \cong \angle EDC$,

 $\angle A$ and $\angle C$ are supplementary

Prove: *BCDE* is a parallelogram

Statements	Reasons

_	_
	9
v	IZ.
•	_

Given: $\angle FCE \cong \angle DEC$, $\angle FCD \cong \angle DEF$

Prove: *CDEF* is a parallelogram

Statements	Reasons

	_
4	D)
v	O.

Given: TUWX is a parallelogram,

 $\overline{YX}\cong \overline{UV}$

Prove: *TVWY* is a parallelogram

Statements	Reasons

Given: JKLM is a parallelogram,

Prove: JKPN is a parallelogram

N is the midpoint of \overline{MJ} ,

P is the midpoint of $\overline{\mathit{KL}}$

Statements	Reasons

Name:		Unit 8: Polygons & Quadrilaterals
Date:	Per:	Homework 3: Parallelogram Proofs
	** This is a 2-paç	ge document! **
Directions: Complete each p	oof.	
1. Given: $\overline{AD} \parallel \overline{BC}$; $\angle ABD \cong \angle C$ Prove: $ABCD$ is a parallelog		D = C
Statements		Reasons
2. Given: $\overline{WX} \cong \overline{YZ}$; $\angle WXZ \cong \angle$	V7V	$W \longrightarrow X$
Prove: $WX \cong IZ$, $\angle WXZ \cong \angle$ Prove: $WXYZ$ is a parallelog		Z X Y
Statements		Reasons
	_	
3. Given: $\overline{JN} \cong \overline{NL}$; $\angle JMK \cong \angle I$ Prove: $JKLM$ is a parallelog		M K N K
Statements		Reasons
	_	

4. Given: $\angle QRT \cong \angle STR$, $\angle S \cong \angle Q$ Prove: $QRST$ is a parallelogram	R
Flove. QNS1 is a parallelogian	T
	Q
Statements	Reasons
5. Given: $BCDF$ is a parallelogram; $\overline{AB} \cong \overline{BF}$	C
Prove: $\angle A \cong \angle E$	B D
	$A \xrightarrow{F} E$
Statements	Reasons
6. Given: <i>EFGL</i> and <i>LGIJ</i> are parallelograms	E F
Prove: $\angle E \cong \angle I$	L / G
	K/H
	$J \stackrel{\frown}{=} I$
Statements	Reasons
3idiemenis	Redsons
	© Cing Wilson (All Things Algebra® LLC), 2014 2019

4. Given: $\angle QRT \cong \angle STR$; $\angle S \cong \angle Q$

Name:

Geometry

Date:

Unit 8: Polygons & Quadrilaterals

Quiz 8-1: Angles of Polygons & Parallelograms

Per:

Part I: Angles of Polygons

1. What is the sum of the degrees of the interior angles of a 19-gon?

- 2. If the sum of the interior angles of a polygon is 1800°, how many sides does it have?
- 3. What is the measure of an interior angle of a regular nonagon?
- 4. What is the sum of the exterior angles of a 25-gon?
- 5. What is the measure of each exterior angle of a regular decagon?

1. ______ 2. _____ 3. _____

5. _____

Find the value of x.

Part II: Parallelograms

10. Given JM = 27, ML = 16, JL = 46, NK = 15, $m \angle KLM = 48^{\circ}$, $m \angle JKM = 78^{\circ}$, and $m \angle MJL = 22^{\circ}$, find each missing value.

11. If PQRS is a parallelogram, find the values of x and y.

11. *x* = _____

y = _____

12. If ABCD is a parallelogram, find $m \angle C$.

Determine whether the quadrilateral is a parallelogram using the indicated method.

13. D(-8, 1), E(-3, 6), F(7, 4), G(2, -1) (Distance Formula)

13. YES / NO

14. L(-1, 6), M(5, 9), N(0, 2), P(-8, -2) (Slope Formula)

14. YES / NO

15. B(-2, -9), C(0, -5), D(6, -3), E(4, -7) (Distance and Slope Formulas)

15. YES / NO

Complete each proof.

16. Given: *ABCG* and *BCDE* are parallelograms

Prove: $\overline{AG} \cong \overline{ED}$

Statements	Reasons

17. Given: $\overline{KL} \parallel \overline{NM}$; $\angle L \cong \angle N$

Prove: *KLMN* is a parallelogram

Statements	Reasons

18. Given: W is the midpoint of \overline{SU} ; $\overline{ST} \parallel \overline{VU}$

Prove: STUV is a parallelogram

Statements	Reasons

Name:

Date:

Topic:

Class:

Main Ideas/Questions

Notes/Examples

Properties of RECTANGLES

Rectangles have the same properties of parallelograms:

- Opposite sides are congruent.
- Opposite sides are parallel.
- Opposite angles are congruent.
- Consecutive angles are supplementary.
- Diagonals bisect each other.

PLUS THESE!

2

Directions: Each quadrilateral below is a rectangle. Find the missing measures.

1.

2.

$$BC =$$

3.

4.

$$m \angle WVZ =$$

5. Given DB = 42, AD = 26, and $m \angle DAE = 52^{\circ}$.

$$EB =$$

$$AB = \underline{\hspace{1cm}}$$

$$m\angle ABD = \underline{\hspace{1cm}}$$

$$m \angle BCA = \underline{\hspace{1cm}}$$

6. Find *EF*.

7. If RT = 5x - 14 and US = 2x + 10, find VT.

8. If JM = x + 17 and MK = 5x - 23, find JL.

9. If VW = 9x - 11 and SU = 16x - 12, find WT.

10. Find $m \angle BCE$.

11. Find $m \angle JHI$.

12. Find $m \angle XZW$.

13. Solve for *x*.

Name:

Unit 8: Polygons & Quadrilaterals

Per: _____ Date:

Homework 4: Rectangles

** This is a 2-page document! **

Directions: If each quadrilateral below is a rectangle, find the missing measures.

1.

VW = ____

$$ZX =$$
______ $VX =$ ______

**GH* = 14

GF =

GE = _____

DF = _____

HF = _____

DG =

3.

m∠1 = _____

m∠5 = _____ *m*∠9 = _____

4.

 $m \angle BCD = \underline{\hspace{1cm}}$

$$m \angle ADE = \underline{\hspace{1cm}}$$

 $m \angle AEB = \underline{\hspace{1cm}}$

$$m\angle CBE = \underline{\qquad} m\angle DEA = \underline{\qquad}$$

5.

m∠JMK = _____

$$m \angle HLK = \underline{\hspace{1cm}} m \angle JLK = \underline{\hspace{1cm}}$$

6. Find WZ.

7. If SQ = 11x - 26 and PR = 5x + 28, find PR.

8. If AE = 6x - 55 and EC = 3x - 16, find DB.

9. If LO = 15x + 19 and QN = 10x + 2, find PN.

10. If DE = 4x + 1, EB = 12x - 31, and CD = 28, find AD.

11. Find *m∠GJK*.

12. Find $m \angle ADE$.

13. Find $m \angle VWZ$.

14. Find *m∠DHG*.

Ν	~	n	•	_	•
14	u		ш	ᆫ	٠

Date:

Topic:

Class:

Main Ideas/Questions

Notes/Examples

Rhombi have the same properties of parallelograms:

Properties of RHOMBI

- Opposite sides are congruent.
- Opposite sides are parallel.
- Opposite angles are congruent.
- Consecutive angles are supplementary.

4.

Diagonals bisect each other.

Plus these!

6

Directions: Each quadrilateral below is a rhombus. Find the missing measures.

1. JK = 12 and JN = 7

2. EF = 23 and DF = 40

3. RT = 22 and US = 18

$$RS =$$

$$m \angle 1 =$$

5. ZY = 34, WY = 38, and $m \angle ZXY = 34^{\circ}$.

$$WZ = \underline{\hspace{1cm}}$$

Properties of SQUARES

A square has ALL the properties of a parallelogram, rectangle, and rhombus!

- Opposite sides are congruent.
- Opposite sides are parallel.
- Opposite angles are congruent.
- Consecutive angles are supplementary.
- Diagonals bisect each other.
- Four right angles.
- Diagonals are congruent.
- Four congruent sides.
- Diagonals are perpendicular.
- Diagonals bisect opposite angles.
- **6.** If ABCD is a square and AD = 11, find each missing value.

$$BC =$$
______ $m \angle DAB =$ _____
 $AC =$ ______ $m \angle AEB =$ _____
 $BD =$ ______ $m \angle CBD =$ ______
 $EC =$ ______ $m \angle BAC =$ ______

7. If PQRS is a square and TR = 17, find each missing value.

$$PR =$$
 $m \angle PRS =$ $QS =$ $m \angle STR =$ $m \angle PSR =$

8. If *MNOP* is a rhombus, find *MP*.

9. If *CDEF* is a rhombus, find $m \angle FED$.

10. If STUV is a square with SW = 2x + 13 and WU = 8x - 41, find VT.

11. If FGHI is a square, solve for x.

Name:

Unit 8: Polygons & Quadrilaterals

Date: ______ Per: ____

Homework 5: Rhombi and Squares

** This is a 2-page document! **

Directions: If each quadrilateral below is a rhombus, find the missing measures.

1. UV = 8 and WX = 5

2.
$$BC = 28$$
 and $BD = 32$

3.
$$MK = 24$$
, $JL = 20$, and $m \angle MJL = 50^{\circ}$

5. Find m/HGI.

6. Find $m \angle ADB$.

7. If $m \angle XYZ = 136^{\circ}$, solve for x.

8. If DE = 16x - 3, EF = 9x + 11, and DF = 52, find HG.

Directions: If each quadrilateral below is a square, find the missing measures.

9.

$$SU = \underline{\hspace{1cm}}$$
 $TV = \underline{\hspace{1cm}}$

10.

11.

12. Solve for x.

- 13. Which quadrilaterals always have diagonals that are congruent?
 - Parallelograms
 - Rectangles
 - ☐ Rhombi
 - Squares

- 14. Which quadrilaterals always have consecutive angles that are supplementary?
 - Rectangles
 - ☐ Rhombi

- 15. Which quadrilaterals always have diagonals that are perpendicular?
 - Parallelograms
 - Rectangles
 - ☐ Rhombi
 - Squares

- Parallelograms

 - Squares
- 16. Which quadrilaterals always have diagonals that bisect each other?
 - Parallelograms
 - Rectangles
 - ☐ Rhombi
 - Squares

COORDINATE GEOMETRY: Name that Quadrilateral!

> Step 1:		
· Step 2:		
CASE 1 (Parallelogram)	Opposite sides are congruent and diagonals are NOT congruent.	
CASE 2 (Rectangle)	Opposite sides are congruent and diagonals are congruent.	
CASE 3 (Rhombus)	All four sides are congruent and diagonals are NOT congruent.	
CASE 4 (Square)	All four sides are congruent and diagonals are congruent.	

Directions:	Given the vertices.	determine the o	uadrilaterals most s	pecific classification.
		acionimic mo c	o a a ma rorais i most s	podine diassineanori.

1 A(9, -4), B(8, -2), C(2, -5), D(3, -7)

ABCD is a _____

2 Q(-2, -7), R(1, -5), S(4, -7), T(1, -9)		
	QRST is a	
3 J(5, -1), K(8, 2), L(11, 10), M(8, 7)		
3 <i>J</i> (5, -1), <i>K</i> (8, 2), <i>L</i> (11, 10), <i>M</i> (8, 7)		
3 J(5, -1), K(8, 2), L(11, 10), M(8, 7)		
3 J(5, -1), K(8, 2), L(11, 10), M(8, 7)		
3 J(5, -1), K(8, 2), L(11, 10), M(8, 7)		
3 J(5, -1), K(8, 2), L(11, 10), M(8, 7)		
3 J(5, -1), K(8, 2), L(11, 10), M(8, 7)		
3 J(5, -1), K(8, 2), L(11, 10), M(8, 7)		
3 J(5, -1), K(8, 2), L(11, 10), M(8, 7)		
3 J(5, -1), K(8, 2), L(11, 10), M(8, 7)		
3 J(5, -1), K(8, 2), L(11, 10), M(8, 7)		
3 J(5, -1), K(8, 2), L(11, 10), M(8, 7)		
3 J(5, -1), K(8, 2), L(11, 10), M(8, 7)		
3 J(5, -1), K(8, 2), L(11, 10), M(8, 7)		
3 J(5, -1), K(8, 2), L(11, 10), M(8, 7)		
3 J(5, -1), K(8, 2), L(11, 10), M(8, 7)		
3 J(5, -1), K(8, 2), L(11, 10), M(8, 7)	<i>JKLM</i> is a	

•	W(-4, -3), X(1, -2), Y(2, -7), Z(-3, -8)		
		WXYZ is a	·
6	D(-5, 9), E(-3, 6), F(-6, -2), G(-8, 1)		
5	D(-5, 9), E(-3, 6), F(-6, -2), G(-8, 1)		
•	D(-5, 9), E(-3, 6), F(-6, -2), G(-8, 1)		
•	D(-5, 9), E(-3, 6), F(-6, -2), G(-8, 1)		
5	D(-5, 9), E(-3, 6), F(-6, -2), G(-8, 1)		
•	D(-5, 9), E(-3, 6), F(-6, -2), G(-8, 1)		
•	D(-5, 9), E(-3, 6), F(-6, -2), G(-8, 1)		
•	D(-5, 9), E(-3, 6), F(-6, -2), G(-8, 1)		
•	D(-5, 9), E(-3, 6), F(-6, -2), G(-8, 1)		
•	D(-5, 9), E(-3, 6), F(-6, -2), G(-8, 1)		
•	D(-5, 9), E(-3, 6), F(-6, -2), G(-8, 1)		
5	D(-5, 9), E(-3, 6), F(-6, -2), G(-8, 1)		
5	D(-5, 9), E(-3, 6), F(-6, -2), G(-8, 1)		
5	D(-5, 9), E(-3, 6), F(-6, -2), G(-8, 1)		

QUADRILATERALS in the COORDINATE PLANE

Directions: Use your knowledge of slope, distance, midpoint, and the properties of quadrilaterals to answer the following questions.

1. On parallelogram PQRS below, if P is located at (-1, 6) and S is located at (-7, -3), what is the slope of \overline{QR} ?

2. On rectangle ABCD below, if A is located at (3, 4) and B is located at (7, 6), what is the slope of \overline{BC} ?

3. On rhombus WXYZ, if W is located at (-5, -2) and Y is located at (3, -2), what is the slope of \overline{XZ} ?

4. On square JKLM below, if J is located at (-2, 5) and K is located at (2, 2), what is the slope of \overline{LK} ?

5. On parallelogram STUV below, if S is located at (-4, 1) and \overline{T} is located at (5, 3), what is the length of \overline{VU} ?

6. On square PQRS below, if Q is located at (7, 0) and R is located at (5, -8), what is the length of \overline{SR} ?

7. On rectangle DEFG below, if D is located at (-1 -1) and F is located at (4, -8), what is the length of \overline{GE} ?

8. On parallelogram ABCD below, if A(1, 1), B(8, 5), C(5, -5) and D(-2, -9), what are the coordinates of point E?

Name:		_ Unit 8: Polygons & Quadrilaterals
Date:	Per:	Homework 6: Classifying Quadrilaterals in the Coordinate Plane
	** This is a 2-pag	ge document! **
		adrilaterals most specific classification: Justify your answer using the distance formula.
1. S(-9, 14), T(1, 10), U(-3, 0), I		sosilly your answer osilly the distance formula.
		STUV is a
2. E(-7, -4), F(2, -3), G(0, -7), H	<i>I</i> (-9, -8)	
		EFGH is a

3. A(-5, 8), B(-2, 14), C(12, 7), D(9, 1)	
	<i>ABCD</i> is a
	$ABCD$ is $O_{\underline{}}$.
4. <i>K</i> (5, -3), <i>L</i> (7, 1), <i>M</i> (9, -3), <i>N</i> (7, -7)	
4. <i>K</i> (5, -3), <i>L</i> (7, 1), <i>M</i> (9, -3), <i>N</i> (7, -7)	
4. K(5, -3), L(7, 1), M(9, -3), N(7, -7)	
4. K(5, -3), L(7, 1), M(9, -3), N(7, -7)	
4. K(5, -3), L(7, 1), M(9, -3), N(7, -7)	
4. K(5, -3), L(7, 1), M(9, -3), N(7, -7)	
4. K(5, -3), L(7, 1), M(9, -3), N(7, -7)	
4. K(5, -3), L(7, 1), M(9, -3), N(7, -7)	
4. K(5, -3), L(7, 1), M(9, -3), N(7, -7)	
4. K(5, -3), L(7, 1), M(9, -3), N(7, -7)	
4. K(5, -3), L(7, 1), M(9, -3), N(7, -7)	
4. K(5, -3), L(7, 1), M(9, -3), N(7, -7)	
4. K(5, -3), L(7, 1), M(9, -3), N(7, -7)	
4. K(5, -3), L(7, 1), M(9, -3), N(7, -7)	
4. K(5, -3), L(7, 1), M(9, -3), N(7, -7)	
4. K(5, -3), L(7, 1), M(9, -3), N(7, -7)	
4. K(5, -3), L(7, 1), M(9, -3), N(7, -7)	
4. K(5, -3), L(7, 1), M(9, -3), N(7, -7)	
4. K(5, -3), L(7, 1), M(9, -3), N(7, -7)	
4. K(5, -3), L(7, 1), M(9, -3), N(7, -7)	
4. K(5, -3), L(7, 1), M(9, -3), N(7, -7)	
4. K(5, -3), L(7, 1), M(9, -3), N(7, -7)	
4. K(5, -3), L(7, 1), M(9, -3), N(7, -7)	KLMN is a

Unit 8: Polygons & Quadrilaterals

Quiz 8-2: Parallelograms, Rectangles, Rhombi, & Squares

Per:

- 1. Which quadrilaterals always have opposite anales that are congruent?
 - **Parallelograms**
 - Rectangles
 - Rhombi
 - Sauares

- 2. Which quadrilaterals always have diagonals that bisect opposite anales?
 - **Parallelograms**
 - Rectangles
 - Rhombi
 - Squares
- **3.** If ABCD is a parallelogram, AD = 14, EC = 11, $m \angle ABC = 64^{\circ}$, $m \angle DAC = 71^{\circ}$, and $m \angle BDC = 25^{\circ}$, find each measure.

- a) BC =_____
- d) $m \angle ABD = \underline{\hspace{1cm}}$
- **b)** AC =_____
- **e)** *m∠ACD* = _____
- c) $m \angle DAB =$ f) $m \angle ADB =$
- **4.** If PQRS is a rectangle, ST = 12, and $m \angle PRS = 23^{\circ}$, find each measure.

- a) SQ =_____
- d) $m \angle PSR = \underline{\hspace{1cm}}$
- **b)** *PR* = _____
- **e)** *m∠SQR* = _____
- c) $m \angle OPR =$ _____ f) $m \angle PTQ =$ _____
- **5.** If JKLM is a rhombus, MK = 30, NL = 13, and $m \angle MKL = 41^{\circ}$, find each measure.

- a) NK =
- e) $m \angle JML =$
- **b)** JL =_____
- **f)** $m \angle MLK =$ _____
- **c)** *KL* = _____
- g) $m \angle MNL =$
- d) $m \angle JKM =$ _____ h) $m \angle KJL =$ _____
- **6.** If WXYZ is a square with WZ = 27, find each measure.

- a) ZY =_____
- d) $m \angle WRZ =$
- **b)** *WY* = _____
- e) $m \angle XYZ =$ _
- **c)** RX =_____
- f) $m \angle ZWY = \underline{\hspace{1cm}}$

7. If CDEF is a parallelogram, find $m \angle FCD$.

8. If JKLM is a rectangle, JL = 2x + 5, and MK = 7x - 40, find MK.

9. If PQRS is a rhombus, find $m \angle PQR$.

10. Quadrilateral BCDE has vertices B(-1, -1), C(6, -2), D(5, -9), and E(-2, -8). Determine the most precise classification of BCDE: a parallelogram, rectangle, rhombus, or square. Use the distance formula to justify your answer.

Name:

Date:			

Topic:

Class:

NON-ISOSCELES Trapezoids

Main Ideas/Questions

Notes/Examples

Properties of Non-Isosceles Trapezoids:

- Only ONE pair of opposite sides are parallel.
- Consecutive angles between parallel lines are supplementary.

ISOSCELES Trapezoids

Isosceles trapezoids have the same properties as non-isosceles trapezoids, plus these:

- Non-parallel sides (legs) are congruent.
- Diagonals are congruent.
- Base angles are congruent.
- Opposite angles are supplementary.

Directions: Find each missing value on the trapezoids below.

1.

2. A

3. Solve for *x*.

4. Find $m \angle R$.

5. *DEFG* is an isosceles trapezoid.

6. *TUVW* is an isosceles trapezoid.

∠V ≅ _____

7.

$$m\angle Q = \underline{\hspace{1cm}}$$

8.

9. If *MNOP* is an isosceles trapezoid, MP = 16x - 13, NO = 9x + 8, PN = 5y + 19, and MO = 12y - 37, solve for x and y.

10. If *ABCD* is an isosceles trapezoid, find each missing angle.

11. If JKLM is an isosceles trapezoid, find each missing angle.

$$M = (10x - 33)^{\circ}$$

$$M = (4x + 17)^{\circ}$$

$$L$$

12. If WXYZ is an isosceles trapezoid, find each missing angle.

$$m\angle W = \underline{\hspace{1cm}}$$

13. If *CDEF* is an isosceles trapezoid, find each missing angle.

$$m\angle C = \underline{\hspace{1cm}}$$

14. If *STUV* is an isosceles trapezoid, find each missing angle.

$$m \angle T = \underline{\hspace{1cm}}$$

Name:		Date:
	1	

Topic:	Class:
--------	--------

Directions: Use the trapezoid above for questions 1-4.

1. If
$$AB = 14$$
 and $DC = 26$, find EF .

2. If $AB = 7$ and $DC = 31$, find EF .

3. If
$$EF = 22$$
 and $DC = 38$, find AB .

5. For trapezoid PQRS, Y and Z are midpoints of the legs. Find YZ.

6. For trapezoid GHJK, L and M are midpoints of the legs. Find KJ.

7. For trapezoid WXYZ, U and V are midpoints of the legs. Find UV.

Name:

Unit 8: Polygons & Quadrilaterals

Date: _ Per: _____

Homework 7: Trapezoids

** This is a 2-page document! **

Directions: If each quadrilateral below is a trapezoid, find the missing measures.

m∠*C* = _____

$$m \angle C = \underline{\qquad}$$
 $m \angle E = \underline{\qquad}$

2.

m∠*Q* = _____

3.

m∠*J* = _____

$$m \angle L = \underline{\qquad}$$
 $m \angle M = \underline{\qquad}$

4.

 $m \angle W = \underline{\hspace{1cm}}$

5. Solve for x.

6. Find $m \angle B$.

7.

m∠*M* = _____

8.

 $m\angle W = \underline{\hspace{1cm}}$

9.

m∠*J* = _____

m∠K = _____

m∠*L* = _____

m∠M = _____

10. If EFGH is an isosceles trapezoid, EH = 4x - 27, FG = x + 9, EG = 3y + 19, and FH = 11y - 21, solve for x and y.

11. Find *WX*.

12. Find *AB*.

13. Find *ML*.

14. Find *GH*.

15. Find *RS*.

Name:

Date:

Topic:

Class:

Main Ideas/Questions

Notes/Examples

Properties of KITFS

A kite is a quadrilateral with the following properties:

• Exactly two pairs of consecutive congruent sides. ($\overline{AB} \cong \overline{AD}$ and $\overline{BC} \cong \overline{DC}$)

- One pair of opposite angles are congruent. $(\angle ABC \cong \angle ADC)$
- Diagonals are perpendicular. $(\overline{AC} \perp \overline{BD})$

Directions: If each quadrilateral below is a kite, find the missing values.

1.

$$m \angle B = \underline{\qquad}$$

$$m \angle D = \underline{\qquad}$$

2.

$$m \angle J = \underline{\qquad}$$
$$m \angle K = \underline{\qquad}$$

3.

$$m \angle PQT = \underline{\hspace{1cm}}$$
$$m \angle QRT = \underline{\hspace{1cm}}$$

5.

6.

7. If WX = 14 and WR = 8, find RZ.

8. If AC = 38 and ED = 41, find CD.

9. If RS = 10 and RU = 9, find QS.

10. If GF = 15 and CG = 23, find CD.

11. Solve for *x*.

12. Find $m \angle L$.

13. Solve for *x*.

14. Find $m \angle STV$.

15. Find *m∠FGJ*.

16. Find $m \angle NQP$.

QUADRILATERALS

TRAPEZOID

PARALLELOGRAM

- Only ONE pair of opposite sides are parallel (called bases).
- Consecutive angles are supplementary.

consecutive congruent sides.

Exactly two pairs of

Diagonals are perpendicular.

angles are congruent. One pair of opposite

Midsegment of a Trapezoid:

connects the midpoints of the legs. A midsegment of a trapezoid This segment is equal to the average of the two bases.

RHOMBUS

- Four congruent sides.
- Diagonals are perpendicular.
 - Diagonals bisect opposite angles.

RECTANGLE

Consecutive angles supplementary.

Opposite angles congruent. Opposite sides congruent. Opposite sides parallel.

Diagonals bisect each other.

- Four right angles.
- Diagonals are congruent.

SOUARE

properties of parallelograms, rectangles, and rhombil Squares have ALL the

ISOSCELES FRAPEZOID

- (legs) are congruent. Non-parallel sides
- Diagonals are congruent.
- Base angles are congruent.
 - Opposite angles are supplementary.

Name:

Unit 8: Polygons & Quadrilaterals

Date: _____ Per: ____

Homework 8: Kites

** This is a 2-page document! **

Directions: If each quadrilateral below is a kite, find the missing measures.

1.

 $m \angle F =$

2.

 $m \angle U = \underline{\hspace{1cm}}$

3.

$$m \angle 1 = \underline{\hspace{1cm}} m \angle 5 = \underline{\hspace{1cm}}$$

m∠2 = _____

$$m \angle 3 = \underline{\hspace{1cm}} m \angle 7 = \underline{\hspace{1cm}}$$

4. Given: $m \angle ABC = 70^{\circ}$ and $m \angle ADC = 46^{\circ}$.

 $m \angle 1 = \underline{\hspace{1cm}}$ *m*∠2 = _____

m∠3 = _____

m∠4 = _____

m∠5 = _____

m∠6 = _____

m∠7 = _____

m∠8 = _____

m∠9 = _____

5. If QR = 13 and PT = 8, find QT.

6. If KM = 52 and NL = 33, find LM.

7. If XZ = 46 and WR = 21, find WX.

8. If DE = 15 and EH = 11, find DF.

9. If NK = 7x - 1, NM = 10x - 13, and KM = 24, find NP.

10. Solve for *x*.

11. Find $m \angle S$.

12. Solve for *x*.

13. Find $m \angle EDC$.

14. Find $m \angle RST$.

15. Find $m \angle HIF$.

Unit 8 Test Study Guide

(Polygons & Quadrilaterals)

Name:	
Date:	Per:

Topic 1: Angles of Polygons

- 1. What is the formula for the sum of the interior angle measures of a polygon?
- 2. What is the formula to find the measure of each interior angle of a regular polygon?
- **3.** Find the sum of the interior angle measures of a 35-gon.
- **4.** Six angles of a heptagon measure 107°, 139°, 131°, 110°, 145°, and 128°. What is the measure of the seventh angle?
- **5.** If the sum of the interior angles of a polygon is 3780°, how many sides does it have?
- **6.** What is the measure of each interior angle of a regular 18-gon?
- 7. What is the sum of the exterior angle measures of any polygon?
- **8.** What is the measure of each exterior angle of a regular 30-gon?
- **9.** If the exterior angle of a regular polygon measures 24°, how many sides does it have?
- **10.** If the interior angle of a regular polygon is 162°, how many sides does it have?

11. Solve for *x*.

12. If the figure is a regular polygon, solve for x.

13. Solve for *x*.

Topic 2: Parallelograms

14. If EBCD is a parallelogram, EB = 16, ED = 25, BF = 11, EC = 34, $m \angle BED = 55^{\circ}$, $m \angle CDB = 67^{\circ}$, and $m \angle BCE = 24^{\circ}$, find each missing measure.

BC =______ $m \angle EDC =$ _____ BD =_____ $m \angle EBD =$ _____ FC =_____ $m \angle BEC =$ _____

15. Find $m \angle N$.

16. Find $m \angle R$.

17. In parallelogram ABCD, if ED = 7x - 13 and BD = 16x - 38, find BD.

Topic 3: Rectangles

18. If ABCD is a rectangle, AD = 9, AC = 22, and $m \angle BCA = 66^{\circ}$, find each missing measure.

BC = $m \angle ADC =$ $M \angle ADC =$ $M \angle BAC =$ $M \angle BAC =$ $M \angle CDB =$ $M \angle CDB =$ $M \angle AEB =$ $M \angle AEB =$

19. If PQRS is a rectangle, PR = 9x + 1, and QS = 13x - 11, find TR.

20. If DEFG is a rectangle, $m \angle DEG = (4x - 5)^\circ$, and $m \angle FGE = (6x - 21)^\circ$, find $m \angle DGE$.

Topic 4: Rhombi & Squares

21. If *JKLM* is a rhombus, find each angle.

 22. Using JKLM from the previous question, if MN = 20 and JL = 26, find JK.

23. If STUV is a rhombus, find $m \angle SVU$.

24. If ABCD is a rhombus, AD = 4x + 2, DC = 7x - 13, and BD = 34, find AE.

25. If *WXYZ* is a square, find each angle.

 26. Using WXYZ from the previous question, if WY = 32, find XY.

Topic 5: Trapezoids

27. Find each measure.

 $m \angle Q = \underline{\qquad}$ $m \angle S = \underline{\qquad}$

28. Find each measure.

 $m \angle E = \underline{\hspace{1cm}}$ $m \angle F = \underline{\hspace{1cm}}$ $m \angle G = \underline{\hspace{1cm}}$

29. Find $m \angle H$.

30. Find $m \angle M$.

31. Find $m \angle G$.

32. If WY = 15x - 2 and XZ = 9x + 10, find WY.

33. Find *AB*.

34. Find *YZ*.

Topic 6: Kites

35. If *KLMN* is a kite, $m \angle LMN = 36^{\circ}$ and $m \angle KNJ = 54^{\circ}$, find each measure.

m∠KLN = _____ *m∠JKN* = _____

 $m\angle LKN = \underline{\hspace{1cm}} m\angle NMJ = \underline{\hspace{1cm}}$

 $m\angle KNM = \underline{\hspace{1cm}} m\angle JLM = \underline{\hspace{1cm}}$

 $m\angle LJM = \underline{\qquad} m\angle KLM = \underline{\qquad}$

36. If BCDE is a kite, CD = 21 and DF = 18, find CE.

37. If WXYZ is a kite, find $m\angle Z$.

38. If $DEFG$ is a kite, $m\angle DEF = (12x - 16)^\circ$, $m\angle EFH = (3x - 1)^\circ$ and $m\angle DGF = 74^\circ$, find $m\angle GFE$.
Topic 7: Quadrilaterals in the Coordinate Plane
Use the distance and slope formulas to justify your answers to questions 39-40. 39. Determine whether $WXYZ$ given $W(0, 8)$, $X(6, 10)$, $Y(-1, -1)$, $Z(-7, -3)$ is a parallelogram.
40. Determine the most precise classificiaton for quadrilateral <i>ABCD</i> (parallelogram, rectangle, rhombus, or square) given <i>A</i> (3, -4), <i>B</i> (10, -2), <i>C</i> (8, -9), <i>D</i> (1, -11).

Topic 8: Parallelogram Proofs

41.	Given:	RCDE	is a	parallelogram
TI.	OIVCII.	DCDL	is a	parallogiani

Prove: $\overline{EG} \cong \overline{CF}$

Statements	Reasons

42. Given: $\Delta TYZ \cong \Delta XYW$

T is the midpoint of $\overline{\emph{VZ}}$

Prove: VWXT is a parallelogram

Statements	Reasons

Name: _____

Unit 8 Test

Date: Per:

Polygons & Quadrilaterals

- anales of a 27-aon?
- 1. What is the sum of the measures of the interior 2. If the sum of the interior angles of a polygon is 2340°, how many sides does the polygon have?
 - **A.** 4860°
- C. 5220°
- **B.** 4500°
- **D.** 166.7°

- A. 11 sides
- C. 15 sides
- **B.** 13 sides
- **D.** 16 sides

3. Find $m \angle S$.

 $m \angle S =$

4. A regular hexagon is shown below. Find the value of x.

x =

5. If the polygon shown below is a regular nonagon, what is the value of x?

x =

6. Find $m \angle DCE$.

 $m \angle DCE =$

- 7. If each interior angle of a regular polygon measures 168°, how many sides does the polygon have?
 - A. 12 sides
 - B. 30 sides
 - C. 25 sides
 - **D.** 15 sides

- **8.** Which of the following properties is always true for a parallelogram?
- **9.** Which of the following quadrilaterals always have diagonals that are congruent? Check all that apply.

- A. Diagonals bisect each other.
- B. Diagonals are perpendicular.
- C. Diagonals are congruent.
- **D.** Diagonals bisect opposite angles.
- - Paralle**l**ograms
 - Rectangles
 - ☐ Rhombi
 - Squares
 - Isosceles Trapezoids

Use parallelogram WXYZ for questions 10 and 11.

$$m \angle WZX =$$

11. If XZ = 8x - 18 and RZ = 2x + 5, find XR.

$$XR =$$

Use rectangle *ABCD* for questions 12-14.

$$BD =$$

13. Find $m \angle ADB$.

$$m \angle ADB =$$

14. Find $m \angle DEC$.

$$m\angle DEC =$$

Use rhombus *DEFG* for questions 15 and 16.

16. If EF = 13 and DF = 18, find EH.

$$EH =$$

Use square ABCD for questions 17 and 18.

18. If $m \angle ACB = (11x - 32)^\circ$, find the value of x.

x =

Use kite *JKLM* for questions 19 and 20.

19. If $m \angle JKN = 28^{\circ}$ and $m \angle KLM = 103^{\circ}$, find $m \angle JML$.

$$m \angle JML =$$

- **20.** If JL = 18, NK = 12, and ML = 10, find the perimeter of JKLM.
 - **A.** 42
 - **B.** 45
 - **C**. 50
 - **D.** 56

21. If ABCD is a parallelogram, find $m \angle D$.

22. If JKLM is a rectangle, find $m \angle NML$.

$$m\angle D$$
 =

 $m \angle NML =$

23. If RSTU is a rhombus, find $m \angle UTS$.

24. Find $m \angle P$.

$$m \angle UTS =$$

 $m \angle P =$

25. Find $m \angle T$.

26. If BD = 8x - 27 and EC = 2x + 33, find BD.

$$m \angle T$$
 =

$$BD =$$

27. Find *WX*.

28. If QRST is a kite, find $m \angle QRS$.

$$WX =$$

$$m \angle QRS =$$

29. The vertices of quadrilateral PQRS are given below. Use the distance and/or slope formulas to determine if PQRS is a parallelogram. Use the diagram as a guide.

P(-6, 4), Q(-2, 7), R(-1, 0), S(-5, -3)

- $oldsymbol{\square}$ PQRS is a parallelogram
- ightharpoonup PQRS is not a parallelogram

30. The vertices of quadrilateral LMNP are L(-1, 7), M(4, 9), N(8, -1), and P(3, -3). Using the distance formula, determine the most precise classification of LMNP: parallelogram, rectangle, rhombus, or square. Use the diagram as a guide.

LMNP is a

31. WXYZ is a quadrilateral with W located at (-5, 2) and X located at (3, 0). What must be the slope of \overline{ZY} in order for WXYZ to be a parallelogram?

- **A**. 4
- **c**. $\frac{1}{4}$
- **B.** -4
- **D**. $-\frac{1}{4}$

32. Rhombus CDEF is shown below. If the slope of \overline{FC} is $\frac{5}{2}$, what must be the slope of \overline{CD} in order for CDEF to be a square?

- **A.** $\frac{2}{5}$
- **c**. $\frac{5}{2}$
- **B.** $-\frac{2}{5}$
- **D.** $-\frac{5}{2}$

33. In addition to the information given in the drawing, which statement is sufficient to prove PQRS is a parallelogram?

- **A.** $\overline{QR} \cong \overline{SP}$
- **B.** $\overline{QP} \cong \overline{SR}$
- **C.** V is the midpoint of \overline{PR}
- **D.** $\angle QPR \cong \angle SRP$

34. Given: CEFH is a parallelogram, $\Delta CGH \cong \Delta FDE$

Prove: *CDFG* is a parallelogram

Statements	Reasons

35. Given: PQRS is a parallelogram, $\angle PSQ \cong \angle VRQ$

 $\angle RTQ \cong \angle QVR$

Prove: TQVR is a parallelogram

Statements	Reasons

© Gina Wilson (All Things Algebra®, LLC), 2014-2019